Engineering Research Paper

This sample Engineering Research Paper is published for educational and informational purposes only. If you need help writing your assignment, please use our research paper writing service and buy a paper on any topic at affordable price. Also check our tips on how to write a research paper, see the lists of research paper topics, and browse research paper examples.

Engineering is a body of complex knowledge and a sophisticated art. Because it incorporates mathematical and physical sciences in its applications and designs, it is often mentioned together with science. Engineers, however, deal with the operation of things and apply scientific methods to understand and solve problems, whereas scientists focus on the discovery of knowledge. The traditional role of engineering is to apply natural laws in order to meet the practical needs of society. The scope of engineering is broad, ranging from designing a paper clip, to building space shuttles for space missions, to inspecting the Eiffel Tower.

Engineering is of great importance to modern societies. Participation in engineering, however, is closely linked to gender and race. Historically, engineering, like other intellectual endeavors, was considered a white male domain. Women and racial minorities were virtually absent from the development of engineering as a profession, but not because there were no females or minorities with technical knowledge and expertise. Many female and black inventors remained unrecognized because of economic, legal, and political barriers. Cultural assumptions about the “proper” roles of women and minorities and discriminatory practices, both individual and institutional, discouraged and restricted creative activities among women and minorities. This traditional negating of the intellectual achievements and abilities of women and minorities had a long-term adverse impact on female and minority participation in and contribution to engineering.

Engineering education and employment has become more inclusive, due to a variety of progressive reforms, such as the Civil Rights Act (1964), Title IX of the Education Amendments (1972), and affirmative action programs. Furthermore, industrialization and development in defense and information technology industries have created a rising demand for technical workers. As a result, employers turn to nontraditional workers— women, minorities, and immigrants—as an additional source of skilled labor.

The notion that there is a male culture of engineering has been invoked to account for existing gender disparities in the engineering profession. Due to gender role socialization, women tend to lack “tinkering” experience in childhood. This deficit in technical skills presents challenges for female college students in predominantly male fields such as engineering. It has been suggested that the masculine nature of technological work and male dominance in the workplace have made it difficult for female engineers to fit in. The dearth of women in engineering fields in turn helps perpetuate the male culture of engineering.

Prior to 1880, engineering practice in the United States was primarily a private, independent endeavor, but since then it has become institutionalized and professionalized. By contrast, in Britain engineering is still considered a craft-based occupation rather than an elite profession. A traditional emphasis on apprenticeship as the means to obtain practical skills and experience sets British engineers apart from their American counterparts, who undergo formal training in engineering science. In Britain, neither the government nor the private sector has a significant role in the development and expansion of engineering education. It has been argued that the focus on training through apprenticeship limits the development of science-based high-tech industry, and that the “craft” model is responsible for Britain’s economic decline. The British engineering population can be categorized into three groups: chartered engineers, technical engineers, and technicians. Unlike autonomous managers, British engineers who perform non-manual technical work enjoy a marginal status in the organizational structure. They organize themselves by unions instead of opting for professional structuring. As a result, engineers in Britain occupy a relatively low social status compared to their European and American counterparts.

Unlike the British, the French rely on elite engineering schools to produce their technical experts. French engineers put a premium on theoretical knowledge. They tend to identify themselves more with high-status management than with low-status technical staff and, as with their American counterparts, they are expected to join the ranks of management. Having formal training in mathematics and science prepares them for their managerial careers. The French engineering workforce is highly stratified, based on divisions among academic institutions and among employers. The same can be said about the German engineering community. However, instead of concentrating on abstract knowledge and basic research, the training of engineers in Germany has incorporated practical training into engineering science. German engineers have played a key role in the nation’s industrialization. The vast majority of them are employed by the state and industry.

Engineering in the United States is not a homegrown product. The American engineering profession began to take shape after European engineering practices were introduced into the United States. The government, industry, and academic institutions have collectively shaped the professionalization and internationalization of engineering. Professional engineering in the United States evolved as a synthesis of the British “craft” system, with its focus on the practical and empirical; the French “school” system, with its emphasis on formal and theoretical training; and, later, the German “estate” model, with its orientation toward research. During the nineteenth century, most American engineers were trained on-the-job or through apprenticeship in a machine shop. The British “craft” method became the training system for many American civil and mechanical engineers. Others received formal training at military academies, such as the United States Military Academy at West Point. Gradually, civilian engineering schools replaced military academies as the principal training ground for engineers. After the passage of the Morrill Act by Congress in 1862, civilian engineering schools became the principal producers of engineers. Under this act, the federal government offered land grants to states for the establishment of schools or college programs in engineering. Many academic institutions took advantage of these land grants and began to offer courses in engineering. As the professionalization of engineering took shape, new engineering fields began emerging in the late nineteenth century. Meanwhile, the influence of business and industry on formal engineering training became increasingly stronger. Besides land, a lot of resources are required to set up an engineering school, including expensive laboratory equipment. Through their financial backing of engineering schools and to a lesser extent the training of engineers at their own company schools, business and industry have exerted direct, strong, and enduring influence over engineering curricula as well as the supply of engineers. As a result, the private sector has become a major sponsor and beneficiary of university engineering schools. Although universities have assumed the role of educating engineers, the private sector has maintained its control over engineering education by offering critical financial backing to engineering programs across the country, new and old.

Economic integration and expanding free trade have made engineering a complex global endeavor transcending national boundaries. With the advent of information technology and advanced telecommunications, transnational projects involving engineers from different cultures are not uncommon. Collaborations in research and development between engineers and scientists from diverse backgrounds are also routine. Engineers can be found in both public and private sectors, and enjoy enormous influence in business and industry.

Engineering is manifested in many facets of our lives. At the end of the twentieth century, the integration of engineering with disciplines such as mathematics, cognitive science, and artificial intelligence resulted in the creation of computer science and information science programs at universities. Many medical applications— such as robotics, artificial organs, radiology, and ultrasound—are the culmination of research pairing engineering and other disciplines.

Because technical competence is so critical for business and industry, engineers have become very much part of the modern system of technocracy, or rule by experts. “Engineer-inventors” believe that they can offer technical, logical, and practical solutions to social problems and, eventually, facilitate social progress. Indeed, no one can deny that technological developments have transformed the structure of society and changed our work and lifestyles. Very few people have any real knowledge of the planning, design, and evaluation associated with the creation and maintenance of utilities, buildings and other structures, machines and equipment, and a host of commercial products. But for many people, a world without automobiles, computers, and mobile phones would be unthinkable. Like managers, engineers are trusted by employers to perform sophisticated tasks with little or no supervision. For these reasons, engineers, who enjoy relatively high prestige in many countries, have been called the “production arm,” “trusted workers,” and “symbolic analysts.”

Technological inventions and innovations have served diverse economic, cultural, and political purposes. On the one hand, in democratic societies technology can be a constructive tool used to foster positive social change. On the other hand, it can also be a destructive force, used by a ruling class to preserve domination and control over the masses. Thus, despite the universal applications of engineering designs, engineering is never truly valueneutral.


  1. Downey, Gary Lee, and Juan C. Lucena. 1995. Engineering Studies. In Handbook of Science and Technology Studies, eds.Sheila Jasanoff, Gerald E. Markle, James C. Petersen, and Trevor J. Pinch, 167–188. Thousand Oaks, CA: Sage Publications.
  2. Layton, Edwin T., Jr. 1986. The Revolt of the Engineers: Social Responsibility and the American Engineering Profession. 2nd ed. Baltimore, MD: Johns Hopkins University Press.
  3. McIlwee, Judith S., and J. Gregg Robinson. 1992. Women in Engineering: Gender, Power, and Workplace Culture. Albany: State University of New York Press.
  4. Meiksins, Peter, and Chris Smith. 1996. Engineering Labour: Technical Workers in Comparative Perspective. London and New York: Verso.
  5. Nye, Mary Jo, ed. 2003. The Modern Physical and Mathematical Sciences. Vol. 5 of The Cambridge History of Science. Cambridge, U.K., and New York: Cambridge University Press.
  6. Stabile, Donald R. 1986. Veblen and the Political Economy of the Engineer: The Radical Thinker and Engineering Leaders Came to Technocratic Ideas at the Same Time. American Journal of Economics and Sociology 45 (1): 41–52.
  7. Stabile, Donald R. 1987. Veblen and the Political Economy of Technocracy: The Herald of Technological Revolution Developed an Ideology of “Scientific” Collectivism. American Journal of Economics and Sociology 46 (1): 35–48.
  8. Stanley, Autumn. 1995. Mothers and Daughters of Invention: Notes for a Revised History of Technology. New Brunswick, NJ: Rutgers University Press.
  9. Tang, Joyce. 2000. Doing Engineering: The Career Attainment and Mobility of Caucasian, Black, and Asian-American Engineers. Lanham, MD: Rowman & Littlefield.
  10. Whalley, Peter. 1986. The Social Production of Technical Work: The Case of British Engineers. Albany: State University of New York Press.
  11. Wharton, David E. 1992. A Struggle Worthy of Note: The Engineering and Technological Education of Black Americans. Westport, CT: Greenwood Press.

See also:

Free research papers are not written to satisfy your specific instructions. You can use our professional writing services to buy a custom research paper on any topic and get your high quality paper at affordable price.


Always on-time


100% Confidentiality
Special offer! Get discount 10% for the first order. Promo code: cd1a428655