Genomics Research Paper

This sample Genomics Research Paper is published for educational and informational purposes only. If you need help writing your assignment, please use our research paper writing service and buy a paper on any topic at affordable price. Also check our tips on how to write a research paper, see the lists of research paper topics, and browse research paper examples.

The term genomics was coined in 1987 by Victor A. McKusick and Frank H. Ruddle as the title for a new journal of that name. McKusick and Ruddle derived it from genome, a concept that had been circulating in biology since the early 1920s. The roots of genome are the Greek genos (class, kind, race) and the suffix -ome (as used in rhizome and chromosome.). Genome is defined as the entire sequence of DNA found in the nucleus of every cell.

In the 1980s and 1990s, genomics primarily referred to large-scale projects to map the genes and sequence the DNA of organisms. As it turned out, a bacteriophage called phi-x174 was the first organism whose complete DNA sequence was revealed. The sequencing of its 5,375 nucleotides was accomplished in 1977 by Frederick Sanger and his colleagues at the University of Cambridge. In the ensuing two decades, a series of further viral genome-sequencing projects were undertaken. In July 1995 Robert David Fleischmann reported the completion of the sequencing of the first genome of a nonviral organism (H. influenzae).

Encouraged by the chancellor of the University of California, Santa Cruz, Robert Sinsheimer, and the U.S. Office of Health and Environmental Research, biologists began in the mid-1980s to evaluate the possibility of mapping the genes and sequencing the DNA of the human genome. As part of its mission to assess the health effects of radiation, the U.S. Department of Energy established in 1987 three human genome research centers at Los Alamos, New Mexico; Livermore, California; and the Lawrence Berkeley National Laboratory in Berkeley, California. The initiative to first map and then sequence the complete human genome was formally launched in 1990 as a joint program of the Department of Energy and the National Institutes of Health. In France, the Centre d’Étude du Polymorphisme Humain conducted a successful gene-mapping project funded by the Muscular Dystrophy Association. In the United Kingdom, the Wellcome Trust supported human genome research. Germany and Japan soon joined the international efforts in what was called a “race” to map the genes and sequence the 3.1 billion base pairs of the human genome.

In the wake of a successful initial mapping of the human genome, the Human Genome Organization decided by the mid-1990s to decode the DNA of model organisms before sequencing the human genome. In 1997 the complete DNA sequence of the yeast genome was published; a year later the ninety-seven million base pairs of the worm C. elegans followed; in early 2000 an advanced draft of the genome of the fruit fly Drosophila was announced.

Using different approaches, the Human Genome Sequencing Consortium and a team led by Craig Venter at Celera Genomics separately published in February 2001 their preliminary findings, estimating the number of genes in the human genome at 30,000 to 40,000. A later reanalysis reduced the number to approximately 20,000 to 25,000. The completion of the project in April 2003 has led to the identification of millions of sites on the genome where individuals differ.

The challenges in completing gene-mapping and DNA-sequencing projects were primarily technical, organizational, and financial rather than scientific. The problem scientists face today is how to use genomic information to gain biological understanding. Accordingly, genomics has increasingly given way to postgenomic studies focusing on the functions of genes and the complex interactions between cells, systems of cells, multicellular organisms, populations of organisms, and their environment. The three terms functional genomics (the study of genetic function), proteomics (the study of the proteins expressed by a genome), and transcriptomics (the study of RNA transcripts) indicate that the epistemic status of the genome has shifted from an object of analysis to a tool of research. In the emerging world of postgenomics, sequences are used as giant reference tools.

The social relevance of genomics lies primarily in the agricultural and biomedical utilization of genetic information. Knowledge gained from genetic and genomic research has enabled biomedicine to envision the organism at a molecular scale. New diagnostic tests based on a molecular understanding of life reveal susceptibility to a broadening range of diseases. The concept of genetic risk factors has led to a redrawing of the line between the normal and the pathological. Additionally, various patient groups have formed around specific diseases, inflecting new styles of collective thought, action, and passion that entail a redefinition of both the biological and the social. As a consequence, a new moral landscape has emerged that contrasts with the ethical discourse of the public sphere.

The challenge of contemporary molecular biology is to proceed from the generation of genomic information to the assessment of hypothetical propositions in experimental settings. For social scientists, it will be of paramount importance to continue observing and analyzing the unexpected emergence of objects and the unpredictable reconfiguration of forms as they assemble into an evershifting understanding of life.


  1. Brent, Roger. 2000. Genomic Biology. Cell 100: 169–183.
  2. Cook-Deegan, Robert. 1995. The Gene Wars: Science, Politics, and the Human Genome. New York: Norton.
  3. Kevles, Daniel J., and Leroy Hood, eds. 1992. The Code of Codes: Scientific and Social Issues in the Human Genome Project. Cambridge, MA: Harvard University Press.
  4. Rabinow, Paul. 1999. French DNA: Trouble in Purgatory. Chicago: University of Chicago Press.

See also:

Free research papers are not written to satisfy your specific instructions. You can use our professional writing services to buy a custom research paper on any topic and get your high quality paper at affordable price.


Always on-time


100% Confidentiality
Special offer! Get discount 10% for the first order. Promo code: cd1a428655